Derivative Formula





Derivative Formulas

Derivative is a rate of change of function with respect to a variable.After the invention of a derivative of a function by Newton and Leibnitz in around 17th century, it is widely used in the sector of math and physics.

Some of the important formulas of derivative are as follows:-

Let u, v, and w are functions of the variable x, and a, b, c are constant then
 1 . \dfrac{d}{dx}(c ) = o \\[3mm] 2. \dfrac{d}{dx}(x) = 1 \\[3mm] 3. \dfrac{d}{dx} (x^n) = nx^{n- 1} \\[3mm] 4. \dfrac{d}{dx}(u \pm v) = \dfrac{du}{dx} \pm \dfrac{dv}{dx} \\[3mm] 5. \dfrac{d}{dx}(cu) = c\dfrac{du}{dx} \\[3mm] 6. \dfrac{d}{dx}(uv) = u \dfrac{dv}{dx} + v \dfrac{du}{dx} \\[3mm] 7. \dfrac{d}{dx}\left(\dfrac{u}{v} \right) = \dfrac{v \dfrac{du}{dx}- u \dfrac{dv}{dx}}{v^2}(\text{quotient rule}) \\[3mm] 8. \dfrac{d}{dx}(u^n) = nu^{n- 1} \dfrac{du}{dx} \\[3mm] 9. \dfrac{d}{dx}(yu, v) = \dfrac{dv}{dx} \left(\dfrac{du}{dx}, y \right) \\ 10. \dfrac{d}{dx} (u, v) = \dfrac{dv}{dx} \left(\dfrac{du}{dx}, v \right) (\text{Chain Rule}) \dfrac{du}{dx} = \dfrac{du}{dv} \dfrac{dv}{dx} \\ \text{Another similar formula is given by} \dfrac{du}{dx} = \dfrac{\dfrac{du}{dv}}{\dfrac{dx}{dv}}
Derivative of Trigonometric function and their inverse:
1. \dfrac{d}{dx}(sin(u)) = \cos(u) \dfrac{du}{dx} \\[3mm] 2. \dfrac{d}{dx}(\cos(u)) = -\sin(u) \dfrac{du}{dx} \\[3mm] 3. \dfrac{d}{dx}(\tan(u)) = \sec^2(u) \dfrac{du}{dx} \\[3mm] 4. \dfrac{d}{dx} (\cot(u)) = -\csc^2(u) \dfrac{du}{dx} \\[3mm] 5. \dfrac{d}{dx}(\sec(u)) = \sec(u) \tan(u) \dfrac{du}{dx} \\[3mm] 6. \dfrac{d}{dx}(\csc(u)) = -\csc(u) \cot(u) \dfrac{du}{dx} \\[3mm] 7. \dfrac{d}{dx}(\sin^{-1}(u)) = \dfrac{1}{\sqrt{1- u^2}} \dfrac{du}{dx} \\[3mm] 8. \dfrac{d}{dx}(\cos^{-1}(u)) = -\dfrac{1}{\sqrt{1- u^2}}\dfrac{du}{dx} \\[3mm] 9. \dfrac{d}{dx} (\tan^{-1}(u)) = \dfrac{1}{1 + u^2} \dfrac{du}{dx} \\[3mm] 10. \dfrac{d}{dx}(\cot^{-1}(u)) = -\dfrac{1}{1 + u^2} \dfrac{du}{dx} \\ 11. \dfrac{d}{dx}(\sec^{-1}(u)) = \dfrac{1}{|u|\sqrt{u^2- 1}}\dfrac{du}{dx} \\ 12. \dfrac{d}{dx}(\csc^{-1}(u)) = \dfrac{1}{-|u|\sqrt{u^2- 1}}\dfrac{du}{dx}
Derivative of the Exponential and Logarithmic
1. \dfrac{d}{dx}(\ln(u)) = \dfrac{1}{u}\dfrac{du}{dx} \\[3mm] 2. \dfrac{d}{dx}(\log_a(u)) = \dfrac{1}{\ln(a) u} \dfrac{du}{dx} \\[3mm] 3. \dfrac{d}{dx}(e^u) = e^u \dfrac{du}{dx} \\[3mm] 4. \dfrac{d}{dx}(a^u) = \ln(a)a^u \dfrac{du}{dx} \\ 5. \dfrac{d}{dx} (u^v) = u^v . \left[ \dfrac{u'v + uv' \ln u}{u}\right]
Deviate of the Hyperbolic function and their Inverses
Recall the definition of the trigonometric functions of the trigonometric functions.
\cos h(x) =\dfrac{e^x + e^{-x}}{2}\\[3mm] \sin h(x) = \dfrac{e^x- e^{-x}}{2} \\[3mm] \tan h(x) = \dfrac{\sin h(x)}{\cos h(x)} \\ \cot h(x) = \dfrac{\cos h(x)}{\sin h(x)} \\ \sec h(x) = \dfrac{1}{\cos h(x)} \\ \csc h(x) = \dfrac{1}{\sin h(x)} \\[3mm] 1. \dfrac{d}{dx}(\sin h(u)) = \cos h(u) \dfrac{du}{dx} \\ 2. \dfrac{d}{dx}(\cos h(u)) = \sin h(u) \dfrac{du}{dx} \\[3mm] 3. \dfrac{d}{dx}(\tan h(u)) = \sec h^2 (u) \\[3mm] 4. \dfrac{d}{dx}(\cot h(u)) = -\csc h^2(u) \dfrac{du}{dx} \\ 5. \dfrac{d}{dx}(\sec h(u)) = -\sec h(u) \tan h(y) \dfrac{du}{dx} \\ 6. \dfrac{d}{dx}(\csc h(u)) = - \csc h(u) \cot h(y)\dfrac{du}{dx} \\ 7. \dfrac{d}{dx}(\sin h^{-1}(u)) = \dfrac{1}{\sqrt{u^2 + 1}} \dfrac{du}{dx}
8. \dfrac{d}{dx}(\cos h^{-1}(u)) = \pm \dfrac{1}{\sqrt{y^2- 1}} \dfrac{du}{dx} \\[3mm] 9. \dfrac{d}{dx}(\tan h^{-1}(u)) = \pm \dfrac{1}{\sqrt{u^2- 1}}\dfrac{du}{dx} (-1 < u <1) \\[3mm] 10. \dfrac{d}{dx}(\cot h^{-1}(u)) = \dfrac{1}{1- u^2}\dfrac{du}{dx} (u >1 \,or u< -1) \\[3mm] 11. \dfrac{d}{dx}(\sec h^{-1}(u)) = \pm \dfrac{1}{-|u| \sqrt{1- u^2}} \dfrac{dy}{dx} \\[3mm] 12. \dfrac{d}{dx}(\csc h^{-1}(u)) = \pm \dfrac{1}{-|u| \sqrt{1 + u^2}} \dfrac{du}{dx}
Higher Order Derivatives
Let y = f(x) we have:

 

Second derivative is :\dfrac{d}{dx} \left(\dfrac{du}{dx} \right) = \dfrac{d^2 u}{dx^2} = f^{||}(x) = u^{||}
Third Derivative is: \dfrac{d}{dx}\left(\dfrac{d^2u}{dx^2} \right) = \dfrac{d^3u}{dx^3} = f^{||}(x) = u^{||}
nth Derivative is:\dfrac{d}{dx} \left(\dfrac{d^{n- 1}u}{dx^{n- 1}} \right) = \dfrac{d^nu}{dx^n} = f^n(x) = u^n
in some books, the following notation for higher derivatives is also used:  D^n(u) = \dfrac{d^nu}{dx^n}
Higher Derivative formula for the product: Leibniz formula
Application of Derivatives
i.    Recall

a.    Volume of Cone(V) = \dfrac{1}{3}\pi r^2h, r = radius, h= height

b.    Volume of Cylinder (V) = \pi r^2h

c.    Volume of Sphere(V) = \dfrac{4}{3}\pi r^3

d.    Surface area of Sphere(S) =4 \pi r^2

e.    Curved surface of Cylinder(S) =  2 \pi rh

f.    Total surface area of Cylinder (S) = 2 \pi r(r + h)

 

ii.    Equation of tangent at (x_1, y_1) is y- y_1 = f'(x_1) (x-x_1)

iii.    Equation of normal at (x_1, y_1) is y- y_1 = - \dfrac{1}{f'(x_1)}(x-x_1)

iv.    Let m_1 and m_2 be the slope of tangents to the two curves and \theta be the angle between them, then,  \tan \theta = \dfrac{m_1 - m_2}{1 + m_1 m_2}

v.    Approximate increase in y is dy = f^|(x)dy

vi.    Actual increase in y in \delta y = f (x + \delta x)- f (x)

vii.     error percent = \dfrac{error}{y} \times 100



Related posts:

  1. Derivatives of Trigonometric functions. As you know, The functions SINE x(sin x) , CO-SECANT...
  2. Trigonometric Ratios Trigonometric Ratios Trigonometric is a branch of mathematics that deals...
  3. Derivatives of inverse trigonometric functions Inverse trigonometric functions  are the  inverse of trigonometric functions ....
  4. Integration Formulas Using Integration formulas is one of the most basic and...
  5. Maths Formulas for Physics Maths Formulas for Physics. List of mathematical formulas used in...