# Half Angle formulas

Half Angle formulas?:

The Half angle formulas are stated below:

If ABC is a triangle , A , B and C are the three angles of the triangle and a , b , c are the sides opposite to the corresponding angles and

“s” is the semi perimeter or , $s = \dfrac{a + b+ c}{2}$  , Then: $\sin \frac{A}{2} = \sqrt{\dfrac{(s-b)(s-c)}{bc}} \\ \\ \sin \frac{B}{2} = \sqrt{\dfrac{(s-a)(s-c)}{ac}} \\ \\ \sin \frac{C}{2} = \sqrt{\dfrac{(s-a)(s-b)}{ab}} \\ \\ \\ \cos \frac{A}{2} = \sqrt{\dfrac{s(s-a)}{bc}} \\ \\ \cos \frac{B}{2} = \sqrt{\dfrac{s(s-b)}{ac}} \\ \\ \cos \frac{C}{2} = \sqrt{\dfrac{s(s-c)}{ab}} \\ \\ \\ \tan \frac{A}{2} = \sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}} \\ \\ \tan \frac{B}{2} = \sqrt{\dfrac{(s-a)(s-c)}{s(s-b)}} \\ \\ \tan \frac{C}{2} = \sqrt{\dfrac{(s-a)(s-b)}{s(s-c)}}$

Proof of Half angle formula:

First of all let’s prove the half angle formula for $\cos \frac{A}{2}$

Using the cosine law: $2bc \cos A = b^2 + c^2 - a^2 \\ \\ or, 2bc + 2bc \cos A = 2bc + b^2 + c^2 - a^2 \\ \\ or, 2bc (1 + \cos A) = (b+c)^2 - a^2$

Now using the trigonometric sub-multiple angle formula: $2bc . 2 \cos ^2 \frac{A}{2} = (b+c+a)(b+c-a) \\ \\ or , 4bc \cos ^2 \frac{A}{2} = (2s - 2a) . 2s \, \, \, \, ( because : a+b+c = 2s ) \\ So , \cos \frac{A}{2} = \sqrt{\dfrac{s(s-a)}{bc}}$

Now , let us prove the half angle formula for $\sin \frac{A}{2}$

Using the cosine law: $- 2bc \cos A = a^2 - (b^2 + c^2) \\ \\ or, 2bc - 2bc \cos A = 2bc + a^2 - (b^2 + c^2 ) \\ \\ or, 2bc (1 - \cos A) = a^2 - (b-c)^2 \\ \\ or, 2bc . 2 \sin ^2 \frac{A}{2} = (a - b + c)( a + b - c) \\ \\ or, 2bc . 2 \sin^2 \frac{A}{2} = (2s - 2b)(2s - 2c) \\ \\ \\ So , \sin \frac{A}{2} = \sqrt{\dfrac{(s-b)(s-c)}{bc}}$

Lastly , Dividing $\sin \frac{A}{2}$ by $\cos \frac{A}{2}$ we get : $\tan \frac{A}{2} = \sqrt{\dfrac{(s-b)(s-c)}{s(s-a)}}$

Similarly we can also prove the half angle formula of angle B and C.

Related posts:

1. Trigonometric multiple and sub-multiple angle formulas Trigonometric multiple and sub-multiple angle formulas. Trigonometric formulas for multiple...
2. Derivatives of Trigonometric functions. As you know, The functions SINE x(sin x) , CO-SECANT...
3. Trigonometric transformation formulas Trigonometric transformation formulas. Trigonometric formulas used to transform an trigonometric...
4. Derivatives of inverse trigonometric functions Inverse trigonometric functions  are the  inverse of trigonometric functions ....
5. Maths Formulas for Physics Maths Formulas for Physics. List of mathematical formulas used in...