# Reflection, Refraction and Total Internal Reflection

**Ray optics as a limiting case of wave optics**

In my optics (also called geometrical optics) the light is supposed to be propagating in straight lines, called the light rays, which are supposed to be formed of **corpuscles**. In wave optics light is supposed to be propagating in the form of waves.

The phenomena of interference, diffraction and polarization could only be explained by wave theory. The diffraction of light is the bending of light round the edges of the obstacle, due to which sharp images of the objects may not be seen.

The phenomenon of diffraction is more noticeable if the size of the object is comparable to the **wavelength of light**. According to wave theory the path of light may only be rectilinear approximately and not exactly. When the size of aperture becomes much greater than the wavelength of light, the light follows the straight line path. Therefore it may be concluded that the ray optics is a limiting case of wave optics.

** **

**Reflection**

** **

**Laws of Reflection**

The regular **reflection** follows the two laws:

1. The incident ray, the *reflected ray* and normal to surface at the point of incidence all lie in the same plane.

2. The* angle of incidence* (i) is equal to the angle of reflection (r’).

(i) **Formation of Image by the plane mirror**: The formation of image of a point object O by a plane mirror is represented in figure below.

The image formed ‘I’ has the following characteristics.

(a) The size of image is equal to the size of object.

(b) The separation of image from mirror formed behind the mirror is equal to the separation of object from the mirror i.e. OM = MI.

(c) The image is virtual, erect and laterally reversed.

**Number of images in inclined mirrors:**

Let be the angle between two plane minors:

(i) If the object is placed asymmetrically between mirrors, no. of images

(ii) If the object is placed symmetrically between mirrors and the value of is even , then .

(1 is subtracted because two images coincide)

**Refraction**

When a ray of light falls on the boundary separating the two media, there is a change in direction of ray. This phenomenon is called *refraction*.

*Laws of Refraction:*

(i)The incident ray, the refracted ray and normal to the surface separating the two media all lie in the same plane.

(ii) **Snell’s Law**: For two media, the ratio of sine of angle of incidence to the sine of the angle of refraction is constant for a beam of particular wavelength I.e.

Where and are absolute refractive indices of ‘I’ and ‘II’ media respectively and is the **refractive index** of second medium with respect to ‘I‘ medium.

As light flows reversible path, we have:

Multiplying equation 1 and 2 we get:

Also the frequency of light remains unchanged when passing from one medium to the other.

The **refractive index** of a medium is defined as the ratio of speed of light in vacuum to the speed of light in medium.

I.e.

being wavelength of light in air and medium respectively.

**Formation of image by Refraction**

According to **Snell’s law** if . That is if a ray of light enters from rarer medium to a denser medium, it is deviated towards the normal and if that is if the ray of light enters from denser to a rarer medium it is deviated away from the normal.

Accordingly if the ray of light starting from objects ‘O’ in denser medium travels along OP, it is deviated away from the normal along PQ. The ray PQ appears to come from ‘I’.

Thus ‘I’ is the virtual image of ‘O’. It can be shown that:

Where ‘x’ is displacement or apparent shift.

** **

**Refraction through a number of media**

Now let us consider the refraction of light ray through a series of media as shown in figure. The ray AB is incident on air-water interface at an angle ‘I’. The ray is deviated in water along BC towards the normal.

Then it falls on water-glass interface and is again deviated towards normal along CD. If the last medium is again air, the ray emerges parallel to the incident ray. Let be angles of **refraction** in water and glass respectively.

Then from Snell’s law,

Where,

= refractive index of air = 1

= refractive index of water

= refractive index of glass

Multiplying equation (i), (ii) and (iii), we get:

Lateral shift on passing through a glass slab: Consider refractive of a ray AO incident on the slab at an angle of incidence ‘I’ through the glass slab EFGH.

After refraction the ray emerges parallel to the incident ray.

Let PQ be perpendicular dropped from P on incident ray produced.

The lateral displacement caused by plate,

X = PQ = OP sin (I – r)

(iii) If ‘I’ is very small, r is also very small, then:

So that takes the form .

Therefore, the expression for lateral displacement takes the form:

**Critical Angle**: **Total Internal Reflection**

The **angle of incidence** in denser medium for which the angle of refraction in rarer medium is 90° is called the critical angle (C).

If and are refractive indices for rarer and denser media then,

Where it is the *refractive index* of denser medium with respect to rarer medium. When angle of incidence of the ray incident on rarer medium from denser medium is greater than the critical angle, the incident ray does not refract into rarer medium but is reflected back into denser medium. This phenomenon is called **total internal reflection**.

The conditions for total internal reflection are:

(i) The ray must travel from denser to rarer medium.

(ii) The angle of incidence i > critical angle C.

The critical angle for water-air, glass-air and diamond air interfaces is 49°, 42° and 24° respectively.

A fish or diver in water at depth h sees the whole outside world in horizontal circle of radius,

being refractive index of water.

**Optical fibre**

Optical fibre is a device based on total internal reflection by which signals may be transferred from one location to another. It is a thin pipe of plastic or specially coated glass in which light enters at one end and leaves at other end suffering a number of total internal reflections with little loss of energy.

The fibre works even if it is bent or twisted. For total internal reflection at the wall of fibre, the angle of incidence i > C, where sin C being refractive index of fibre with respect to air. The thickness of fibre is of the order of human hair = .

A bundle of optical fibres can be put to several uses :

(1) It can be used as a ‘light pipe’ in medical and optical examination.

(2) It can transmit a laser or any other light beam.

(3) They are being used in telephone and other transmitting cables.

**Sign Conventions**

The sign conventions of coordinate geometry will be used, taking pole of mirror as origin. Accordingly the focal length of concave mirror is negative and that of convex mirror is positive.

The distance of object placed in front of mirror on the left (u) is (Negative X-axis) negative and the distance of image from mirror (v) is negative for real image and positive for virtual image.

**Curved Mirrors and Mirror formulae**

There are two types of spherical (curved) mirrors:

(i) **Convex**: Convex mirrors forms only virtual images of a real objects.

(ii) **Concave**: Concave mirrors may form real and virtual images or real objects.

Mirror formulae for all spherical mirrors are:

and magnification

For a convex mirror, f is positive and for a concave mirror f is negative.

If the object is to the left of the mirror u is negative and v is positive if image is on the right and negative if image is on the left of mirror.

It is observed that a spherical mirror of large aperture does not give a sharp image because the marginal rays (outer rays) are focused at a relatively smaller distance from pole P. This defect in image is called spherical aberration.

This is reduced by taking spherical mirror of small diameter as compared to its length focal or it is completely eliminated by taking parabolic mirrors.

**Lens and Lens Formulae**

There are two types of lenses:

(i) Convex (or converging) lens

(ii) Concave (or diverging) lens

**Lens Maker’s Formula**

If are the radii of curvature of first and second refracting surfaces of a thin lens of focal length f, then lens-makers formula is

Where is refractive index of material of lens with respect to surrounding medium.

#### Thin lens formula is:

Magnification produced by a lens:

Where ‘I’ is size of image and O, is size of object.

If a lens (refractive index ) separates two media of refractive indices then its total length ‘f’ is:

** **

**Power of lens:** The power, of a lens is its ability to deviate the rays towards axis and is given by:

**Lens immersed in a liquid**: If a lens refractive index is immersed in a liquid of refractive index then its focal length ( ) in liquid, is given by:

Where,

(i) If is the local length of lense in air, then,

*Now there arise three cases*:

(i) If are of same sign but .

That is the nature of lens remains unchanged, but its focal length increases and hence power of lens decrease. In other words the convergent lens becomes less convergent and **divergent lens** becomes less divergent.

(ii) id . That us the lens behaves as a glass plate.

(iii) if the have opposite signs.

That is the nature of lens changes. A convergent lens becomes divergent and vice versa.

**Newton’s formula**

If the distances of object and image are not measured from optical center, but from first and second principal foci respectively, then,

Newton’s formula states

Where = distance of object from I principal focus .

= distance of image from II principal focus .

If medium on either side on lens is same, then

Therefore, newton’s formula takes the form, .

**Lenses in contact**: If two or more lenses of focal lenses of focal lengths are placed in contact, then their equivalent focal length F is given by:

The power of communication

**Displacement method**

For real image the distance between object and screen must be greater than or equal to 4f.

If the distance between object and screen (D) is greater than 4f, then there are two positions of the lens for which the image of object on the screen is distinct and clear. Using sign convention for real image formed by a lens, we have

Clearly u and v are interchangeable, i.e. in these two positions the distances of object and image from the lens are interchanged.

I.e.

The figure above represents the formation of real images of an object in two positions of lens L when D > 4f.

If are the sizes of images in I and II positions of lens L, O is the size of object and magnifications produced by lens in I position, and II position respectively, then,

and

Multiplying (4) and (5), we get

But

and focal length of lens.

**Silvering of one surface of lens**

If one of the surfaces of a lens is silvered, the rays are first refracted by lens, then reflected from silvered surface and finally refracted by lens, so that the effective focal length of lens is:

Where is focal length of lens and is focal length of spherical mirror of radius of curvature of silvered surface.

This lens acts as a concave mirror and so the formula for image formation will be

Two thin lenses separated by a distance: If two thin lenses of focal lengths are placed at a distance d apart, then equivalent focal length of combination is:

Or, power of combination

Related posts:

- Internal Energy of a System Each substance is associated with a certain amount of energy...
- Sine Law Sine Law. Sine law is one of the important law...
- Dispersion, Spectra and Optical instrument Refraction through a Prism A prism is a transparent...
- Pythagorian Identities Fundamental Pythagorian identity of trigonometry and other basic trigonometric formulas...
- Maths Formulas for Physics Maths Formulas for Physics. List of mathematical formulas used in...