# Algebraic Formulas

Algebra is one of the most basic part of mathematics , Algebra deals with variables and numbers.

Although Algebra is the basic mathematics , It deals with large numbers of formulas which relates two or more variables and numbers with each other.

Basic Algebraic Formulas:

The algebraic formulas involving basic relation between two and three variables are:

1>

$a^2-b^2 = (a+b)\times (a-b)$

2>

$a^2+b^2 = (a+b)^2-2ab=(a-b)^2+2ab$

3>

$(a+b)^2 = a^2+2ab+b^2 = (a-b)^2+4ab$

4>

$(a-b)^2 = a^2-2ab+b^2 = (a+b)^2-4ab$

5>

$a^3+b^3 = (a+b) \times (a^2-ab+b^2) = (a+b)^3-3ab \times (a+b)$

6>

$a^3-b^3 = (a-b) \times (a^2+ab+b^2) = (a-b)^3+3ab \times (a-b)$

7>

$(a+b)^3 = a^3+3a^2b+3ab^2+b^3 = a^3+b^3+3ab \times (a+b)$

8>

$(a-b)^3 = a^3-3a^2b+3ab^2-b^3 = a^3-b^3-3ab \times (a+b)$

9>

$(x+a) \times (x+b) = x^2+x \times (a+b)+ab$

10>

$(x-a) \times (x+b) = x^2+x \times (b-a)-ab$

11>

$(x-a) \times (x-b) = x^2-x \times (a+b)+ab$

12>

$(a+b+c)^2 = a^2+b^2+c^2+2ab+2bc+2ac$

13>

$(a+b+c)^3 = a^3+b^3+c^3+3(a+b)(b+c)(c+a)$

14>

$a^4-b^4 = (a-b) \times (a+b) \times (a^2+b^2)$

15>

$a^6-b^6 = (a+b) \times (a^2-ab+b^2) \times (a-b) \times (a^2+ab+b^2)$

16>

$a^6+b^6 = (a^2+b^2) \times (a^4-a^2b^2+b^4)$

17>

$a^4+a^2b^2+b^4 = (a^2-ab+b^2) \times (a^2+ab+b^2)$

18>

$(a-b-c)^2 = a^2+b^2+c^2-2ab+2bc-2ac$

19>

$a^3+b^3+c^3-3abc = (a+b+c) \times (a^2+b^2+c^2-ab-bc-ac)$

Indices Formulas:

The formulas involving relations between variables and their powers or powers and indices are:

1>

$x^m \times x^n = x^{m+n}$
and
$x^m \times x^n \times \ldots \times x^p = x^{m+n+ \ldots +p}$

2>

$x^m \div x^n = x^{m-n}$
and
$x^m \div x^n \div \ldots \div x^p = x^{m-n- \ldots -p}$

3>

$(x^m)^n = x^{m \times n}$
and
$((x^m)^n)^o) = x^{m \times n \times o}$

4>

$x^0 = 1$

5>

$x^{-m} = \dfrac{1}{x^m}$
and
$x^{m} = \dfrac{1}{x^{-m}}$

6>

$x^{\frac{m}{n}} = \sqrt[n]{x^m}$

7>

$\left( \dfrac{x^a}{y^b} \right)^c = \dfrac{x^{ac}}{y^{bc}}$

8>

$\dfrac{x^m}{y^m} = \left( \dfrac{x}{y} \right)^m$

9>

$\sqrt[m]{\dfrac{x^a}{y^b}} = \dfrac{x^{\frac{a}{m}}}{y^{\frac{b}{m}}}$

10>

$x^{\frac{p}{q}} = \sqrt[q]{x^p} = \left(\sqrt[q]{x}\right)^p$

11>
$\sqrt[m]{\dfrac{x}{y}} = \dfrac{\sqrt[m]{x}}{\sqrt[m]{y}}$

12>

$\sqrt{a} \times \sqrt {b} = \sqrt{a \times b}$    provided that a , b and a*b are not negative numbers.

13>

If, $a^x = a^y$ then , x=y. ( Provided That : $0 < a\text{ and }a \ne 1$ )

14>

If, $a^x = b^x$ then , a=b.  ( Provided That : $0 < a , b \text{ and }a , b \ne 1$ )

Related posts:

1. Derivative of simple algebraic or polynomial functions. The derivative and calculations on finding derivative of simple algebraic functions...
2. Derivatives of Trigonometric functions. As you know, The functions SINE x(sin x) , CO-SECANT...
3. The Power Rule. Power Rule is one of the Techniques of Differentiation. The...
4. The Product Rule. Product Rule is one of the Techniques of Differentiation. The...
5. Infinitesimals and Differentials. What is Infinitesimals and Differentials. A complete guide for understanding...